Incremental Associative Memory Model Algorithm for Highly Scalable Recommender Systems

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Incremental Associative Memory Model Algorithm for Highly Scalable Recommender Systems

Recommender systems are smart and intelligent systems that often seem to know users more than users know themselves. Recommender system helps customers by recommending products they will probably like or purchase based on their purchasing, searching, browsing history and also the other similar customer’s history. Their aim is to provide efficient personalized solution in Ecommerce domain that w...

متن کامل

Incremental Singular Value Decomposition Algorithms for Highly Scalable Recommender Systems

We investigate the use of dimensionality reduction to improve the performance for a new class of data analysis software called “recommender systems”. Recommender systems apply knowledge discovery techniques to the problem of making personalized product recommendations during a live customer interaction. The tremendous growth of customers and products in recent years poses some key challenges fo...

متن کامل

ClustKNN: A Highly Scalable Hybrid Model- & Memory-Based CF Algorithm

Collaborative Filtering (CF)-based recommender systems are indispensable tools to find items of interest from the unmanageable number of available items. Moreover, companies who deploy a CF-based recommender system may be able to increase revenue by drawing customers’ attention to items that they are likely to buy. However, the sheer number of customers and items typical in e-commerce systems d...

متن کامل

Scalable optimization algorithms for recommender systems

Recommender systems have now gained significant popularity and been widely used in many e-commerce applications. Predicting user preferences is a key step to providing high quality recommendations. In practice, however, suggestions made to users must not only consider user preferences in isolation; a good recommendation engine also needs to account for certain constraints. For instance, an onli...

متن کامل

Incremental Learning of Limited Kernel Associative Memory

This paper proposes a limited kernel associative memory, where the number of kernels is limited to a certain number. This model aims to be used on embedded systems with a small amount of storage space. The learning algorithm for the kernel associative memory is an improved version of the limited general regression neural network, which was proposed by one of the authors. In the experiments, we ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Journal of Computer Applications

سال: 2013

ISSN: 0975-8887

DOI: 10.5120/11705-7317